https://leetcode.com/problems/maximum-subarray/description/
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4]
,
[4,-1,2,1]
has the largest sum = 6
. More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
解法一
- 动态规划。设f[i]表示第j处,以a[i]结尾的子序列的最大和。注意:f[i]并不是前i-1个数中最大的连续子序列之和,而只是包含a[i]的最大连续子序列的和。我们求出f[i]中的最大值,即为所求的最大连续子序列的和。
- 状态转移方程:f[i] = max{ a[i], f[i - 1] + a[i] }, target = max { f[i] }。
- max - C++ Reference
- http://www.cplusplus.com/reference/algorithm/max/?kw=max
1 // 2 // main.cpp 3 // LeetCode 4 // 5 // Created by Hao on 2017/3/16. 6 // Copyright © 2017年 Hao. All rights reserved. 7 // 8 9 #include10 #include 11 using namespace std;12 13 class Solution {14 public:15 int maxSubArray(vector & nums) {16 // empty array17 if (nums.empty()) return 0;18 19 int result = nums.at(0), f = 0;20 21 for (auto i = 0; i < nums.size(); i ++) {22 // f[i] = max{ a[i], f[i - 1] + a[i] }23 f = max(f + nums.at(i), nums.at(i));24 25 // target = max { f[i] }26 result = max(result, f);27 }28 29 return result;30 }31 };32 33 int main ()34 {35 Solution testSolution;36 37 vector< vector > vecTest{ {-2, 5, 3, -6, 4, -8, 6}, {}, { 1, 2, 3, 4, 5} };38 39 for (auto v : vecTest)40 cout << testSolution.maxSubArray(v) << endl;41 42 return 0;43 }
解法二
- 分治法,O(nlog(n))。分成两段分别求最大连续子序列的和,再归并。选定中间节点middle,则最大连续子序列和为max { 左边最大连续子序列和,右边最大连续子序列和,包含中间节点的最大连续子序列和 }。计算包含中间节点的最大连续子序列和,则是以中间节点向两边扩张,得到最大前缀+中间节点+最大后缀。
1 // 2 // main.cpp 3 // LeetCode 4 // 5 // Created by Hao on 2017/3/16. 6 // Copyright © 2017年 Hao. All rights reserved. 7 // 8 9 #include10 #include 11 using namespace std;12 13 class Solution {14 public:15 int maxSubArray(vector & nums) {16 // empty array17 if (nums.empty()) return 0;18 19 int result = maxSubArrayHelpFunc(nums, 0, nums.size() - 1);20 21 return result;22 }23 24 private:25 int maxSubArrayHelpFunc(vector & nums, int left, int right) {26 // 叶子结点27 if (left == right) return nums.at(left);28 29 int middle = (left + right) / 2; // 中间节点30 int leftMax = maxSubArrayHelpFunc(nums, left, middle); // 左边最大连续子序列和31 int rightMax = maxSubArrayHelpFunc(nums, middle + 1, right); // 右边最大连续子序列和32 int preMax = nums.at(middle); // 包含中间节点的左边最大连续子序列和33 int sufMax = nums.at(middle + 1); // 包含中间节点的右边最大连续子序列和34 35 // 中间节点向左扩张36 int temp = 0;37 for (auto i = middle; i >= left; i --) {38 temp += nums.at(i);39 if (temp > preMax) preMax = temp;40 }41 42 // 中间节点向右扩张43 temp = 0;44 for (auto i = middle + 1; i <= right; i ++) {45 temp += nums.at(i);46 if (temp > sufMax) sufMax = temp;47 }48 49 // max { 左边最大连续子序列和,右边最大连续子序列和,包含中间节点的最大连续子序列和 }50 return max( max(leftMax, rightMax), preMax + sufMax);51 }52 };53 54 int main ()55 {56 Solution testSolution;57 58 vector< vector > vecTest{ {-2, 5, 3, -6, 4, -8, 6}, {}, { 1, 2, 3, 4, 5} };59 60 for (auto v : vecTest)61 cout << testSolution.maxSubArray(v) << endl;62 63 return 0;64 }